Acute cardiovascular response to isocapnic hypoxia. II. Model validation.
نویسندگان
چکیده
The role of the different mechanisms involved in the cardiovascular response to hypoxia [chemoreceptors, baroreceptors, lung stretch receptors, and central nervous system (CNS) hypoxic response] is analyzed in different physiological conditions by means of a mathematical model. The results reveal the following: 1) The model is able to reproduce the cardiovascular response to hypoxia very well between 100 and 28 mmHg PO(2). 2) Sensitivity analysis of the impact of each individual mechanism underlines the role of the baroreflex in avoiding excessive derangement of systemic arterial pressure and cardiac output during severe hypoxia and suggests the existence of significant redundancy among the other regulatory factors. 3) Simulation of chronic sinoaortic denervation (i.e., simultaneous exclusion of baroreceptors, chemoreceptors, and lung stretch receptors) shows that the CNS hypoxic response alone is able to maintain quite normal cardiovascular adjustments to hypoxia; however, suppression of the CNS hypoxic response, as might occur during anesthesia, led to a significant arterial hypotension. 4) Simulations of experiments with controlled ventilation show a significant decrease in heart rate that can only partly be ascribed to inactivation of lung stretch receptors. 5) Simulations performed by maintaining constant cardiac output suggest that during severe hypoxia the chemoreflex can produce a significant decrease in systemic blood volume. In all the previous cases, model predictions exhibit a satisfactory agreement with physiological data.
منابع مشابه
Acute cardiovascular response to isocapnic hypoxia. I. A mathematical model.
A mathematical model of the acute cardiovascular response to isocapnic hypoxia is presented. It includes a pulsating heart, the systemic and pulmonary circulation, a separate description of the vascular bed in organs with the higher metabolic need, and the local effect of O(2) on these organs. Moreover, the model also includes the action of several reflex regulatory mechanisms: the peripheral c...
متن کاملCerebral blood flow response to isocapnic hypoxia during slow-wave sleep and wakefulness.
Nocturnal hypoxia is a major pathological factor associated with cardiorespiratory disease. During wakefulness, a decrease in arterial O2 tension results in a decrease in cerebral vascular tone and a consequent increase in cerebral blood flow; however, the cerebral vascular response to hypoxia during sleep is unknown. In the present study, we determined the cerebral vascular reactivity to isoca...
متن کاملChanges in left ventricular function and coronary blood flow velocity during isocapnic hypoxia: A cardiac magnetic resonance imaging study
Background Cardiac stress testing is the standard of care for diagnosing ischemic heart disease. Traditional stress testing involves physical or pharmacological stress to induce hyperemia and/or increase myocardial oxygen demand. Physical stress is not possible in 100% of cases however, and pharmacological stress carries rare but serious risk. We asked whether acute isocapnic hypoxia could be u...
متن کاملVentilatory effects of 8 h of isocapnic hypoxia with and without beta-blockade in humans.
This study investigated whether changing sympathetic activity, acting via beta-receptors, might induce the progressive ventilatory changes observed in response to prolonged hypoxia. The responses of 10 human subjects to four 8-h protocols were compared: 1) isocapnic hypoxia (end-tidal PO2 = 50 Torr) plus 80-mg doses of oral propranolol; 2) isocapnic hypoxia, as in protocol 1, with oral placebo;...
متن کاملDynamic cerebral autoregulation during and following acute hypoxia: role of carbon dioxide.
Previous research has shown an inconsistent effect of hypoxia on dynamic cerebral autoregulation (dCA), which may be explained by concurrent CO2 control. To test the hypothesis that hypoxic dCA is mediated by CO2, we assessed dCA (transcranial Doppler) during and following acute normobaric isocapnic and poikilocapnic hypoxic exposures. On 2 separate days, the squat-stand maneuver was used to de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 279 1 شماره
صفحات -
تاریخ انتشار 2000